Adsorption of monovalent and divalent cations on planar water-silica interfaces studied by optical reflectivity and Monte Carlo simulations.
نویسندگان
چکیده
Adsorption on planar silica substrates of various monovalent and divalent cations from aqueous solution is studied by optical reflectivity. The adsorbed amount is extracted by means of a thin slab model. The experimental data are compared with grand canonical Monte Carlo titration simulations at the primitive model level. The surface excess of charge due to adsorbed cations is found to increase with pH and salt concentration as a result of the progressive dissociation of silanol groups. The simulations predict, in agreement with experiments, that the surface excess of charge from divalent ions is much larger than from monovalent ions. Ion-ion correlations explain quantitatively the enhancement of surface ionization by multivalent cations. On the other hand, the combination of experimental and simulation results strongly suggests the existence of a second ionizable site in the acidic region. Variation of the distance of closest approach between the ions and surface sites captures ion specificity of water-silica interfaces in an approximate fashion.
منابع مشابه
Ion adsorption-induced wetting transition in oil-water-mineral systems
The relative wettability of oil and water on solid surfaces is generally governed by a complex competition of molecular interaction forces acting in such three-phase systems. Herein, we experimentally demonstrate how the adsorption of in nature abundant divalent Ca(2+) cations to solid-liquid interfaces induces a macroscopic wetting transition from finite contact angles (≈ 10°) with to near-zer...
متن کاملAdsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations.
Complex formation between a weak flexible polyelectrolyte chain and one positively charged nanoparticle in presence of explicit counterions and salt particles is investigated using Monte Carlo simulations. The influence of parameters such as the nanoparticle surface charge density, salt valency, and solution property such as the pH on the chain protonation/deprotonation process and monomer adso...
متن کاملEffects of Water Content on SO2/N2 Binary Adsorption Capacities of 13X and 5A Molecular Sieve, Experiment, Simulation, and Modeling
In this work, SO2 adsorption on 13X and 5A was explored at different concentrations, and the results were compared to molecular simulation and models. The adsorbent saturation tests were performed at four different concentrations of 250, 500, 750, and 1000 ppm, and it was observed that saturation would take more time for higher SO2 concentrations. Grand Canonical Monte Carlo method was used for...
متن کاملPolynucleotide adsorption to negatively charged surfaces in divalent salt solutions.
Polynucleotide adsorption to negatively charged surfaces via divalent ions is extensively used in the study of biological systems. We analyze here the adsorption mechanism via a self-consistent mean-field model that includes the pH effect on the surface-charge density and the interactions between divalent ions and surface groups. The adsorption is driven by the cooperative effect of divalent me...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 135 6 شماره
صفحات -
تاریخ انتشار 2011